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Abstract— A quantum mechanical description of 

dechanneling by point defects will be presented. 

The effects of electrons of heavy impurities and 

those of host material are treated in a double 

screening formulation. For extended defects like 

stacking faults and dislocations, a sudden 

approximation model is used. For positively 

charged channeled particles, the transition among 

bound states in the simple harmonic type 

transverse potential, induced by the sudden 

appearance of the extended defect (stacking fault 

or distortion due to dislocation) are considered. 

The resulting dechanneling probabilities and their 

energy dependences are calculated. An extension 

of the model to relax the sudden approximation 

(specially for dislocations) in a time dependent 

formulation has also been outlined and main 

results presented. 
. 

 
Keywords— Put your keywords here, keywords are separated by 

comma. 

I. INTRODUCTION 

 The study of point defects in the crystals, their 

lattice location etc have been among the first 

applications of RBS/Channeling technique, nearly 

three decades back. The interaction potential 

between the probe projectile and the heavy 

impurities is appreciably modified due the presence 

of host crystal electrons (conduction and valence) 

on the one hand and the atomic electrons of the 

impurity, on the other. We have evaluated these 

effects in a double screening formulation and used 

the resulting double screened potential potential(1) 

to calculate the dechanneling cross sections and the 

results are given in the next section. The extended 

defects (stacking faults and dislocations) have been 

traditionally treated classically by including their 

obstruction and distortion effects. However, we 

have used quantum mechanical sudden 

approximation to calculate the transition 

probabilities on the wave functions of probe 

particles channeled in the perfect crystal to the 

dechanneling states in defective crystal. The 

resulting dechanneling probabilities are found to 

describe the phenomena accurately. The sudden 

approximation is relaxed for dislocations and a time 

dependent formulation is given which yields correct 

semiclassical limits.  

 

POINT DEFECTS 
 

The double-screened potential around a partially 

ionized impurity can be written as(1,2) e-Xar - 

A2e"Ar V(r) = ZI r ë 2 - ë 2 (1) Here Z^ = Zð = 1 

and is omitted in the above equation and ëa is the 

Thomas-Fermi screening radius and is given by(4,5) 

1/ëa = 0.8853ao(ZI — Z})~1^3, where ao is the 

Bohr radius, ZI is the atomic number of the 

impurity, Z\ is the degree of ionization of the 

impurity atom. ë in eq. (1) is the screening 

parameter which is associated with the screening of 

impurity by electron gas of host lattice and it is 

given by ë2 = 4ðe2N(EF) with the density of final 

states N(EF). The probability that the incident pions 

(or decay muons) will get trapped at impurity sites 

or will be diffused can be estimated applying the 

scattering theory; in particular the Born 
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approximation and the double-screened potential 

(1,2) . Therefore the total scattering cross-section is 

 

 

 
The screened potential, in the most general form, is 

given by the Thomas-Fermi TF model 

 
 

where Z1 and Z2 are the atomic numbers of projectile 
and target atoms respectively, ö(x) is called the Thomas-

Fermi screening function. The choice of this TF function, 

and hence the screened potential, is not unique. This 
potential is related to the dielectric function e{q) through 

the Fourier transform as 

 

 

 
 
Neglecting the higher order terms of 'q' and realizing the 

fact that the screened potential is further modified due to 
the presence of interstitial impurities, the potential thus 

derived in the long wavelength limit has been used for 

scattering amplitudes(2). e{q) has a singularity at q = 
2Kf which is not analytic at that point. As a result of this 

singularity, the potential contains the well known Friedel 

oscillations of wave-number 2kF. Expanding the log 
terms in the parenthesis, we get e(q) = 1—72—â2q2 + (ë/q)2, 

where â2 = 2me2/ll5h2irkF, ã2 = me2/3h2irkF and the potential, 

which is modified due to the presence of impurities, is 

given by 

 

 
 

 

  

where ëa and ë are the screening parameters which 

are described by the relevant dielectric function and 

z = ( a2 + b) a = (1 - ã2)/2â2 , b = ë2/â2 and x,y = 

The above formulation highlights the fact that the 

conduction electrons of the host lattice and the 

atomic electrons of the impurity play an important 

role in such an interaction(6). The weakly decaying 

nature of this screened potential shows its signature 

here which is otherwise not observed elsewhere(7). 

Treating the work of Chylinski et al(1) as a 

prototype, we can write the dechanneling 

crosssectionfor the potential as 

 

 

 
 

 

EXTENDED DEFECTS 

 
The channeling phenomena, for the case of 

extended defects which is basically a transition 

from one harmonic potential to the other, is 

governed by the transition probability evaluated in 

terms of matrix element of the wave functions 

corresponding to various portions of obstruction 

distortion. These effects can be suitably 

incorporated by calculating the number of quantum 

states supported by the planar channel. Under the 
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sudden approximation the general expression for 

overlap integral < ipi\ipf > is obtained as(8)  

 

 

 
 

 

  
Here 'n' and 'm' represent harmonic oscillator states 

corresponding to initial state (left part of the channel 

before the fault) and final state(after fault) 

respectively and as is stacking shift. Dislocation is an 

example of distortion in the channel, the amount of 

the distortion decreasing with increasing distance 

from the dislocation core. The distortion effects on 

channeling are incorporated by introducing a 

transverse potential energy term, to be added to 

continuum potential(4). Channeling/dechanneling 

phenomena under this situation is governed by the 

overlap integrals of the appropriate wave functions in 

various regions. Here we consider 12.25 Mev 

positrons channeled along the distorted channel. The 

motion of the positrons described in the rest frame of 

the particle where the particle "sees" a modified 

continuum potential ãVeff(x) (i.e., due to channel 

distortion in the transverse direction (x)) and this 

curvature will not affect the motion of the particle 

along the propagation (z). The expression for Veff is 

obtained as(9) 

 

 

 
 

 

 

 

Here V(x) is planar potential in undistorted channel. 

As before we apply the harmonic approximation to 

above effective planar potential and this analysis is 

appropriate for the channels that are situated far away 

from the dislocation (concentrations typically 106 to 

108 per cm2). 
 

During the passage through the distorted channel, the 

particle has to cross three boundaries (before distortion 

which is straight-+ ve curvature— -ve curvature— un-

distorted) to find itself again in straight channel. The 

wavefunction of the particle in different regions may be 

denoted as <fi(ax), <p(c/x + a'ar), (p(a'x — a'ar), <pf(ax) 
respectively, where <p(x) represents the eigen function of 

the harmonic oscillator and á, a' are the coupling terms in 

straight and distorted portion respectively. The channeling 

probability of the particle with initial state |i > to cross 

interface (I) and to Jrnax be in state |j > in distorted part, is 

defined as Pi^j = | < ip~ \ipi > | 2 ; pIi = J 3 | < j \i > | 2j=0 

where subscript T on the state denotes the relevant wave 

function corresponds to distorted channel after I interface. 

The equivalent expressions in other regions as described 

above, are obtained with similar procedure. The general 

expression for the total channeling probability of the 

particle with a specific initial state |i > so that the particle 

feels itself again in the straight channel with final state |f > 

(after passing through the various portions of distortion) is 

given by 

 

 
 

 
The summation over all final states, to find itself again in 

the straight channel leads to the total dechanneling 

probability. The variation of the perturbed hamiltonian in 

the above approach is assumed to be sudden and the the 

description is given with the assumption that the curvature 

is nearly constant. The non-uniformity effects in curvature 

mentioned above are taken in terms of a time-dependent 

force term which cause transition from bound state to 

scattering state .The dechanneling phenomena under this 

situation is governed by the transition of the particle from a 

bound state (harmonic oscillator) to a scattering state 

(plane wave). The time dependent centrifugal energy term 

in 

relativistic case is obtained by replacing Z by vzt in eqn. (9). 

Unlike previous case, here we consider bound - scattering 

(continuum) transitions and corresponding transitions 
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manifest the dechanneling process. The expression for total 

dechanneling probability of a particle with initial bound 

state |i > (due to channel distortion) to continuum is 

obtained by integration over T r ,> i T i T _ / N_ i — ( mub \ 2 ( 2ur 

density of final states, and it is obtained as ÷n = (2n+1) 

÷0;with ÷ 0 =— exp \2V2haJ Here UJ = (Eb — Ei)/h, Eb is 

energy background in which the particle propagates after 

getting dechanneled and ÷0 is obtained with specific 

reference to initially well channeled particles. The 
dechanneling probability is maximum for those channels 

which are situated below the dechanneling radius (i.e. 

critical distance of the channel from the dislocation 
below which the particle completely gets dechanneled). 

This happens for Co = ãvz/r0. Thus one can make a 

qualitative estimate for dechanneling radius and hence 
for the dechanneling width for initially well channeled 

particles is obtained as Classically, the transverse energy 

E± : 0.13b JjE/E±; A = f ÷0(r)dr = 2r0 respectively. Eøp2, 

where øp is planar critical angle. By replacing E± by 

equivalent classical expression, one gets ë = (0A4:)\Quere Z2 

Vb where b is in A. The dechanneling widths ën are 

estimated for positrons along Al(111) for various initial 

states (|i >). The dechanneling width for He ions has also 

been estimated and compared with existing theory and 

experimental data(10). These details are given below, 

showing reasonable agreement. 
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