
International Journal of Applied Science & Technology Research Excellence Vol. 1, Issue 1, Nov-Dec 2011,                                                                     
ISSN NO. 2250 – 2718 (Print), 2250 – 2726 (Online)  

 

www.ijastre.org Page 70 
 

ROLL PASS DESIGN FOR SHAPE ROLLING USING 

UPPER BOUND METHOD 
 

1
Bimal Nathniel Aind,  

2
Ravi Shankar Anand, 

3
Prashant Prakash 

1Asst Prof, Department of Production Engineering, Birla Institute of Technology Patna, India  
2Asst Prof, Department of Mechanical Engineering, Birla Institute of Technology Patna, India 

3Associate Lecturer, Department of Production Engineering, Birla Institute of Technology Patna, India 
 

Abstract— This paper presents a computerised 

scheme for using an upper bound method for the 

study of external shape and torque in the single 

pass rolling of shaped sections. Generalized 

kinematic ally admissible velocity fields calculated 

from an assumed deforming geometry, in turn 

mathematically developed from a new 

parameterization of curves for the stream line flow 

of the material have been used. An algorithm 

based on the gradient projection method has been 

used for the optimization routine.  An upper 

bound on rolling power established on the basis of 

the velocity fields has been used.  Unknown 

variables in the velocity field need to be 

determined by minimizing rolling power with 

respect to unknown velocity field variables, 

yielding an upper limit to the actual power 

required as well as rolling torque.   Velocity fields 

and power relations for oval to round pass have 

been used and computer analysis was carried out 

to analyze and simulate the process of shape 

rolling.  The computerised scheme can be used for 

quick estimates of the rolling parameters. 
. 

 

I. INTRODUCTION 

Since, many efforts have been made to develop 

methods of calculation of basic parameters for the 

rolling of slab, sheet, and strip. The need is for a 

simple and rapid method of calculating the various 

parameters in rolling such as roll force, torque, 

temperature distribution, strain-rate, strain and 

stress distribution. The slab method is capable of 

handling more realistic material behaviour such as 

strain and strain-rate hardening and temperature 

effects and is particularly appropriate for the rolling 

process. Approximate numerical solutions for 

rolling had been developed by several previous 

investigators, e.g. Orowan [2], Bland and Ford [3], 

Cook and McCrum [4], Ford, Ellis and Bland [5], 

Alexander and Ford [6], Lianis and Ford [7], and 

Sims [8], as discussed in the review by Ford [9]. 

The most comprehensive of these earlier theories is 

that of Orowan [2], who developed a 'homogeneous 

graphical method' of solution, including an attempt 

to allow for the inhomogeneity of deformation 

throughout the volume of the plastically deforming 

material in the arc of contact. All other theories, 

including the original basic theory of von Karman 

[10] assumed that 'plane sections remain plane' 

during passage of the strip through the arc of 

contact. Also, apart from Orowan, all other 

researchers had used approximations such as 

 and (1-cos φ) = 0 or φ
2
/2 and that a 

mean flow stress could be used through the contact 

arc. This was understandable, in view of the 

complexity of Orowan’s homogeneous graphical 

method. 

With the advent of modern computers, Alexander 

[11] showed how any rolling problem could be 

solved accurately using the same basic approach as 

that developed by Orowan. Unlike Orowan’s 

method, however, no allowance was made in the 

computer program for inhomogeneous deformation 

through the arc of contact. Since the inhomogeneity 

factor introduced by Orowan can at best be only an 

approximation to the real situation of unknown 

accuracy it does not appear worthwhile to try to 

include it in the computer solution. It has been 

shown conclusively by Abd-Rabbo and Venter [12] 

that the effect is very small, in any case. The only 

way in which a true prediction of the in 

homogeneity of deformation can be achieved is 
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either by development of slip line field solutions 

with their approximations or by using finite element 

methods, also prone to considerable approximations 

unless very fine meshes requiring large computer 

capacity can be employed. 

 

Lahoti et al [13] have modelled the rolling process 

using this upper bound method. They used Hill's 

[14] kinematically admissible velocity field to 

derive expressions for the strain-rate components , 

 and  and the effective strain-rate . Strain-rate, 

flow stress (σ) and shear stress ( τ ) were used to 

calculate the total energy dissipation rate ET. 

Many researchers, have modelled the rolling 

process using the finite-element method. The basis 

of finite-element modelling, using the variational 

approach, is to formulate proper functionals, 

depending upon specific constitutive relations.  

Kobayashi et ale [15]), took the initiative to propose 

the ―Complex Element Method‖, combining the 

concept of the rigid plastic 3-D FEM and the slab 

method. Soon after that a more simplified method 

was proposed by Kimet et. al. [16], a combined slab 

method with rigid plastic 2-D FEM. Both of the 

above two methods divide the billet into several 

slabs, and process the FEM analysis. A great deal of 

CPU time is indeed saved; however, the precision is 

lowered for shape rolling. 

The development of an analytical, theoretically 

based method to predict metal flow, roll torque, 

rolling pressure and force, and exit velocity for 

shape rolling is of great benefit to the rolling 

industry. Such a method has been presented in this 

study for the analysis of rolling of simple 

geometrical shapes of oval and round sections. The 

analysis assumes elastic deformations to be 

negligible and does not consider combined thermo-

mechanical effects. A  parametric formulation has 

been proposed to cover the entire deformation zone, 

based on which strain rates and velocities are 

determined. The oval-to-round and diamond-to-

rectangle passes have been analyzed with the new 

method. 

 

2. Mathematical model 

The material under the action of the rolls deforms 

from an original shape (oval in this paper) to a final 

shaped section (round). This deformation happens 

in a bounded region, in which the initial and final 

sections are assumed to have arbitrary shape and 

considered as plane surfaces. The other surfaces of 

the deforming region are the roll surfaces. 

 

For metal forming operations, no exact solutions 

may be available for the variables, such as load, 

pressure, velocities, etc. involved in plastic 

deformation. Two methods have been developed to 

establish these parameters: the upper bound method, 

which is certainly an over estimate and the lower 

bound method, which is an underestimate. Upper 

bound methods are valuable tools in solving metal 

forming problems since an upper bound ensures a 

conservative effect. The upper bound method 

involves construction of a kinematically admissible 

velocity field for a deformation process and a 

simultaneous minimization of energy provides the 

so-called "best solution" for the process. To 

accurately model the rolling process the relative 

velocity between the rolls and the workpiece needs 

to be evaluated which centers around an upper 

bound solution to predict the velocity field. Once 

again, plane strain conditions are assumed for the 

problem. 

An upper bound method of analysis was selected 

for the present study because this approach can 

provide useful rolling mill design data for the more 

significant aspects of the rolling problem. The 

method is more accurate than the slab method than 

an approach based on the finite-element method of 

analysis. The application of the upper bound 

method to problems in roll pass design has been 

described by Abrinia and Fazlirad[1].  In this paper, 

a computer code has been developed for 

implementing this method.  

The first step in the method is to define streamlines 

that establish an envelope for the deformation zone, 

an envelope which completely defines the shape of 

the plastically deforming body. In order to calculate 

the coordinates of the billet surface streamlines it is 

necessary to define the streamline equation, an 

equation which actually define the slope of the 
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pathlines of material points as they flow through the 

deformation zone. The streamline equations are 

expressed in terms of velocity field. 

 

Bezier curve is used to mathematically describe the 

streamline. The Bezier curve has a number of 

properties which is convenient to design a curve. In 

general, a Bezier curve can be fitted to any number 

of control points. The number of control points to 

be approximated and their relative position decide 

the degree of the Bezier polynomial. A Bezier curve 

can be specified with boundary conditions, with a 

characterizing matrix, or with a blending functions 

[17]. The blending function specification is the 

most convenient. A Bezier curve of degree n is 

defined in parametric form by the following 

equation: 

 

 

     

 

Where there are n+1 control points, t is a single 

value parameters varying from 0 to 1, and Pi is a 

vector of coordinates of the control point i.e. 

 and is the blending functions 

between  and . 

 

The shape of the Bezier curve is determined by 

position vectors of the control points. The curve 

passes through the first and last control points. 

Shape and hence degree of the polynomial can be 

changed by adding and deleting data points.  

 

Expressing streamlines within the deformation zone 

as Bezier curves require appropriate definition of 

position vectors.  

 

In the upper bound-method of analysis an 

admissible velocity field solution is considered 

through an assumption of the shape of the 

streamlines in the deformation zone.. Based on this 

velocity field, the total energy dissipation rate for 

the metal deformation rate necessarily predicts a 

higher value than that required in the actual metal 

deformation process, based on the limit theorems, 

the lower the energy dissipation rate, the better the 

prediction. Thus, the metal flow distribution can be 

determined by minimizing the energy dissipation 

rate with respect to the velocity field with the actual 

minimization performed with respect to certain 

unknown parameters which are introduced in order 

to represent the metal flow in the actual process. 

Although increasing the number of unknown 

parameters in the velocity field will generally 

improve the solution, the computations become 

more complex. Consequently, in the upper bound 

method of analysis practical compromises must be 

made in choosing an admissible velocity field. 

 

The total power W required to deform the material 

in a rolling operation is expressed as the sum of the 

following components: the power required to 

deform the material plastically, Wi; the power 

required to overcome shear forces resulting from 

velocity discontinuities at entry We, at exit Wx; and 

the power required to overcome friction, Wf. In 

mathematical terms: 

 

W = Wi + We + Wx + Wf                                                                                                     

Where, 

Wi =  

We = d  

Wx = d    

Wf =  d  

The relation for power includes seven unknown 

coefficients; a1 to c2 and Ve which will be 

determined by the optimization of the total power 

required.  A C-computer program utilizing the 

Algorithm was developed to perform the 

optimization. Wi was calculated by numerical 

integration with respect to each of the parameters u, 

q, and t. For We and Wx, analytical integration with 

respect to u was followed by numerical integration 

with respect to q. For Wi, integration was 

performed numerically with respect to both 

parameters. 

 

SIMULATION OF PASS SEQUENCE 
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While the method described earlier is applicable to 

different roll pass sequences, the computer 

procedure reported in this paper addresses only the 

oval to round sequence. 

 

A schematic illustration of the shape rolling process 

considered in the present study is shown in Fig. 

below. It is assumed that a pair of rigid grooved 

rolls, with outer diameter and outside tangential roll 

velocity Vr, draw the billet into the roll groove and 

reduce the billet cross sectional area. It is assumed 

that the entry plane of the deformation zone is a 

plane perpendicular to the direction of rolling 

located at the initial touching point between the 

billet entry cross section and the roll surfaces. It is 

also assumed that the exit plane of the deformation 

zone is a plane perpendicular to the direction of 

rolling located within the plane which contains the 

roll centrelines. The projected length of the roll gap 

and the distance between the entry and exit planes 

z0, is also determined from the specified billet entry 

cross section and the geometric parameters of the 

groove design.  

 

In the shape rolling analysis an analytical 

representation of the three dimensional roll groove 

surface is required. This surface is a surface of 

revolution which can be defined analytically in 

terms of a function f(x), a function of x and y 

coordinates, which expresses the z coordinate 

values of points on the surface. This function can be 

expressed as follows: 

                    

                                          

y and z are the coordinates of a rotated point on the 

roll groove surface.  

 

For the production of round bars the oval-to-round 

pass is the most widely used rolling sequence. In 

Figure below, a quarter of the deformation zone for 

an oval billet to a round bar is shown. Lower roll 

has been omitted for clarity. The rolling geometry is 

assumed to be symmetrical. 

 
 

Fig.1. A quarter of the oval to round pass 

deformation zone [1] 

 

In Fig.1, left hand side coordinate system has been 

employed to simplify relation. Length 2a and 2b is 

the major and minor axes of an ellipse respectively, 

at the entry cross section for the oval to round pass. 

The exit cross section is a circle with radius r. 

  

For the purpose of this study, a single Bezier curve 

was found to be sufficient to appropriately describe 

the entire deformation zone.  

 

Based on, the parametric Bezier formulation for any 

streamline, within the deformation zone in the oval-

to-round pass has been expressed [1] as follows: 
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where  describes the angular position of 

the control point . 

 

The Bezier curve may be expressed in parametric 

terms as  

t) =  

3t   

 

or in Cartesian form: 

 
 

The Cartesian form has been used in the computer 

code.  Vector  provides a parametric definition of 

all the streamlines in the deformation zone. 

Velocities in three dimensions were found.  

 

ADMISSIBLE VELOCITY FIELDS 

The most difficult step in applying the upper-bound 

method of analysis is to develop a class of 

admissible velocity fields. The admissible velocity 

is a set of functions which satisfies the 

incompressibility condition, the essential velocity 

boundary conditions in the roll work piece interface, 

and continuity across elastic plastic interfaces 

within the plastically deforming body.  

The incompressibility condition may be expressed 

as follows, 

+ +  = 0              

,  are the components of the three 

dimensional velocity vector along coordinate axes 

X, Y and Z, respectively.  

MINIMIZATION VARIABLES 

In the shape rolling analysis there are seven 

unknown parameters in the velocity field equations: 

a1, a2, b1, b2, c1, c2 and ve. Hence, the total energy 

dissipation rate, can be expressed as a function of 

these unknown parameters. Hence, the total energy 

dissipation rate can be expressed as a function of 

these unknown parameters, as follows, 

Wtot = Wtot (a1, a2, b1, b2, c1, c2, ve)              

The six unknown parameters a1, a2, b1, b2, c1, c2 

determine the points on the streamline and Ve 

determine the billet velocity upon entry to the 

deformation zone. 

The total energy dissipation rate Wtot, is formulated 

from the velocity field and the strain rate equations 

are expressed as follows,  

                                                                   

                                                                              

                                     

                                     

 are substituted in the 

incompressibility condition i.e. . 

Using the parametric notation employed in this 

study, the plastic deformation component of the 

total rolling power has been expressed as follows: 

Wi =  

           

 are the strain rates in various directions,  is 

the flow stress and is the Jacobian for 

transformation of coordinates from x, y and z to u, 

q and t. 

Plastic deformation component Wi is integrated 

between limits 0 to 1. It is determined by the entry 

plane of the deformation zone, exit plane of the 

deformation zone, roll workpiece and billet free 

side surfaces. Using numerical integration with 

respect to each of the parameters u, q, and t plastic 

deformation component Wi is calculated. 

The velocity discontinuity components of total 

rolling power can be expressed as follows. At entry: 

We =                                   

In the entry plane there is no deformation and We at 

t = 0 is calculated by analytical integration with 

respect to u was followed by numerical integration 

with respect to q. 

At exit: 

Wx =                                            
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In the exit plane Wx at t = 1 is calculated by 

analytical integration with respect to u was 

followed by numerical integration with respect to q. 

The friction component: 

Wf =                                       

For the energy dissipation rate due to friction Wf, 

which is integrated over the roll work piece 

interface, the friction shear factor m, is given an 

input value 

Where  and 

  and  is the 

tangential roll velocity. 

Friction component is integrated analytically with 

respect to the y coordinate, and numerically with 

respect to the x coordinate. 

In the shape rolling analysis, because of the 

increased complexity of the shape rolling velocity 

field W is integrated numerically the corresponding 

expressions for Wi, We, Wx and Wf. 

 

CALCULATION PROCEDURE 

 

The calculations for the deformation process 

involves the following steps :  
1. Input of Fixed data i.e. half length of major and 

minor axes of billet cross section in oval to 

round rolling pass, projected length of 

deformation zone, diameter of exit cross section 

in oval to round rolling pass 

2. Assume some trial value of the parameters a1, 

a2, b1, b2, c1, c2 and ve  (defined earlier) 

3. Calculate the strain rate    

 and the Jacobian matrix using  

 

is the Jacobian for transformation 

of coordinates from x, y, z to u, q, t. 

4. Calculate of Vx, Vy and Vz at t=0 and t=1. 

5. Calculate   at  t=0 and t=1. (using a 

numerical procedure) 

6. Calculate Vt , Vr  at u=1. 

7. Calculate  Wi ,  We  ,  Wx  ,  Wf  (using a 

numerical procedure for integration). 

8. Calculate W = Wi  +  We  +  Wx  +  Wf 

9. Use an optimization procedure to calculate 

the values of a1, a2, b1, b2, c1, c2 and ve that 

will minimize W (the optimization 

procedure is described below) 

10. The value of W corresponding to the 

optimum point gives the rolling power.  

This value is used to compute the rolling 

torque and roll separating force  

11. The values of a1, a2, b1, b2, c1, c2  

corresponding to the optimum point define 

the actual streamlines 

12. With these values the shape of the deformed 

workpiece at any intermediate point 

between the entry and exit planes can be 

calculated 

OPTIMIZATION ALGORITHM 

Rosen’s Gradient Projection Method of 

optimization is used to minimize the total energy 

rate equation which is used to determine the 

constants a1, a2, b1, b2, c1, c2 and ve. The gradient 

projection method of Rosen [18] does not require 

the solution of an auxiliary linear optimization 

problem to find the usable feasible direction. It uses 

the projection of the negative of the objective 

function gradient onto the constraints that are 

currently active. Although the method has been 

described by Rosen for a general nonlinear 

programming problem, its effectiveness is confined 

primarily to problems in which the constraints are 

all linear, which is the case in this problem added in 

this paper. The optimization method proceeds by a 
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sequence of steps using an initially specified value. 

If the step does not contain the nonnegative 

components then that value is the optimum value. If 

the step is not a success the negative component is 

optimised i.e. the procedure is repeated again.  

   

ALGORITHM BASED ON ROSEN’S 

GRADIENT PROJECTION METHOD 

The procedure involved in the application of the 

gradient projection method can be described by the 

following steps 

1. Start with an initial point X1. The point X1 

has to be feasible, that is, 

2. Set the iteration number as i=1. 

3. If Xi is an interior feasible point [i.e., if gj 

(Xi) < 0 for j=1, 2, .... m]set the direction of 

search as Si = f(Xi), normalize the search 

direction as  

 
 

And go to step (5). However, if gj (Xi) = 0 

for j1, j2, .... jp, go to step 4 

4. Calculate the projection matrix Pi as 

 

 Where 

  

 

 

 

 And find the normalized search direction Si as 

  

 
 

5. Test whether or not . If , go to 

step 6. If  compute the vector  at Xi 

as 

  

 

If all the components of the vector  are 

nonnegative, take  =  and stop the 

iterative procedure. If some of the 

components of  are negative, find the 

component  that has the most negative 

value and from the new matrix  as 

  

 

 

  and go to step 3. 

6. If , find the maximum step length 

that is permissible without violating any 

of the constraints  as  

and k is any integer among 1 to m other than 

j1, j2, .... jp . Also find the value of  

. If  is 

zero or negative, take the step length as 

  On the other hand, if  is 

positive, find the minimizing step length *. 

Either by interpolation or by any of the 

methods discussed in Chapter 5 and take  

= *. 

7. Find the new approximation to the 

minimum as 

 
 

8. If   =  or if  < *,some new 

constraints (one or more) become active at 

 and hence generate the new matrix  

to include the gradients of all active 

constraints evaluated at  Set the new 

itration number as i = i + 1. And go to step 

4. If  = * and , * <  no new 

constraint will be active at  and hence 
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the matrix remains unaltered. Set the new 

value of i as i = i + 1, and go to step 3. 

 

With the aid of a digital computer, using the upper 

bound method requires the total energy to be 

minimized. 

OPTIMIZATION ALGORITHM 

Rosen’s Gradient Projection Method of 

optimization is used to minimize the total energy 

rate equation which is used to determine the 

constants a1, a2, b1, b2, c1, c2 and ve. The gradient 

projection method of Rosen [18] does not require 

the solution of an auxiliary linear optimization 

problem to find the usable feasible direction. It uses 

the projection of the negative of the objective 

function gradient onto the constraints that are 

currently active. Although the method has been 

described by Rosen for a general nonlinear 

programming problem, its effectiveness is confined 

primarily to problems in which the constraints are 

all linear, which is the case in this problem added in 

this thesis. The optimization method proceeds by a 

sequence of steps using an initially specified value. 

If the step does not contain the nonnegative 

components then that value is the optimum value. If 

the step is not a success the negative component is 

optimised i.e. the procedure is repeated again.  

 

OPTIMIZATION SOLUTION 

Table 1. Analytical conditions for a single oval to 

round sequence 

Oval to round pass 

sequence 

Analytical conditions 

Entry cross section 

dimensions 

Exit cross section 

dimensions 

Area reduction 

Roll gap 

Roll tangential velocity 

Rotational speed 

2a=23.8 mm and 2b= 

32.9 mm 

R=12.7 mm 

17% 

1.58 

254 mm/s 

105rpm 

 

Since, entry and exit of the deformation zone is 

known. On applying boundary conditions, we get 

the constraints for optimization. Quarter of the 

deformation zone is taken, on applying boundary 

conditions, we get 15 constraints and 7 unknown 

variables a1, a2, b1 b2, c1, c2 and ve. 

RESULTS 

The upper bound analysis described by Abrinia and 

Fazlirad [1] for the oval to round passes has been 

used to develop a computer based calculation 

procedure for calculations related to the 

deformation process and the rolling power. 

ESTIMATION OF MATERIAL FLOW 

STRESS 

The flow stress, of a given metal alloy is influenced 

by factors related to the deformation process, such 

as, temperature of deformation, the strain and strain 

rate. 

In hot rolling, defined as rolling temperature above 

the recrystallization temperature, the flow stress can 

be considered to be primarily a function of 

temperature and strain rate. In a single pass rolling 

process, the temperature and strain rate do not vary 

significantly within the plastically deforming body. 

Thus, in hot rolling the flow stress can be 

approximated as being a constant value within the 

plastically deforming body, and, therefore, it is 

reasonable to use the upper bound method of 

analysis to analyze the metal deformation. Actually, 

in practical situations, it is only necessary to 

estimate the material flow stress after the metal 

deformation is determined. By then the flow stress 

can be estimated from average values of the 

temperature of deformation, strain, and strain rate, 

quantities which are, themselves, already known or 

determined from the metal deformation analysis in 

the upper bound approach. 

On the other hand, in cold rolling, at or room 

temperature, the flow stress of most metal alloy is 

primarily a function of strain. Therefore, the 

application of the upper bound method of analysis 

in cold rolling must be approximated because the 

material flow stress could vary significantly within 

the plastically deforming body, and under these 

conditions, the assumption of constant flow stress 

could introduce errors in the metal deformation 

analysis. 

A widely accepted analytical representation of flow 

stress data in metal forming is in the form of 
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empirical equation. The material is low carbon steel 

AISI 1018 and rolling was performed at 1090’ in 

which the flow stress may be described by 

Kennedy[ 20]. 

                      MPa 

Where  is the effective strain rate as 

                              

Angular velocity, w 

 w= 2πN/60  

Roll tangential velocity, V 

 V= Rw   

 Z0
2
 = R

2
 – (R – (2b – 2r) / 2)

2
  

With the minimum value of the total energy 

dissipation rate, the roll torque can then be 

computed by equating the rate of work input 

required to drive the rolls with the total energy 

dissipation, W. Thus, the roll torque was calculated 

in various roll pass dimensions to incorporate 

several area reduction values,  

Area reduction is given by: 

    

Roll torque is given by: 

   

Table 2. Roll torque in various area reduction 

 
 

CONCLUSION 

In this work, a method has been proposed to 

analyze external shape, material flow stress and roll 

torque for shape rolling. This method employs an 

upper bound solution coupled with a numerical 

optimization of the total power required to deform 

the material and in the process determines unknown 

variables. This method is based on the parametric 

curve formulation to define streamlines within the 

deformation zone. Kinematically admissible 

velocity field were derived from the parametric 

curve formulation, and upper bound was established 

on the rolling power required. In this, step by step 

computer code for power has been developed.  
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